Categories
Machinery

Deep Drawing Press Machine

Deep Drawing Press Machine

We are one of the Deep Drawing Press Machine manufacturers. Deep drawing process & Deep drawing press & Double action deep drawing press & Triple action deep drawing press

Deep drawing is a secondary forming process in which in its simplest form a cylindrical shape or alike (for example a cone or frustum) is produced from a thin disc of sheet metal by subjecting it to a compressive force (while it is held between a die and blank holder) through a circular punch which mainly on the blank thickness as illustrated in Figure 1.

The deep drawing mechanism is a complicated process, particularly the different types of stresses on each region in the blank. To facilitate the understanding of the mechanism, the blank is divided into three regions X, Y, and Z. The outer annual region X is sandwiched between the die at its bottom part and the blank holder at its top part.

Region Y, the inner annular region is not in contact with either the punch or the die, and Z the central region of the blank is only in contact with the punch as illustrated in Figure 1(a). When the compressive force is applied to the punch, the draw proceeds the material in region X starts to draw progressively inwards towards the die profile under the effect of the applied tensile stress resulting in continuously decreasing the radii in this region which causes induced compressive hoop stress which causes an increase in the material thickness at the outer part of region X.

Deep Drawing Press Machine

A deep draw press is a type of metalworking press used to transform flat metal sheets into three-dimensional shapes. It is a versatile tool that can produce a wide range of products, including cooking pots, pans, automotive parts, and electrical enclosures.

How a Deep Draw Press Works:

  1. Blanking: A stamping press is used to cut out a flat blank from a sheet of metal. The blank size is slightly larger than the desired final shape to allow for metal flow during the drawing process.
  2. Heating: The blank may be heated to improve its formability and reduce the risk of cracking. Heating is particularly important for thicker materials or complex shapes.
  3. Loading: The blank is placed on the blank holder of the deep draw press. The blank holder firmly grips the blank around its edges, preventing it from wrinkling or buckling during the drawing process.
  4. Drawing: The punch, a tool with the desired shape of the final product, descends into the blank holder, forcing the blank into the desired shape. The blank flows over the punch, forming the desired three-dimensional shape.
  5. Trimming: Excess material around the edges of the drawn part is trimmed away using a trimming die. This ensures that the final part has a clean edge and meets the desired dimensions.

Types of Deep Draw Presses:

  1. Single-Action Deep Draw Presses: These presses use a single ram to perform both the drawing and trimming operations. They are relatively simple and inexpensive, but they are limited in the complexity of shapes they can produce.
  2. Double-Action Deep Draw Presses: These presses have two rams, one for drawing and one for trimming. This allows for more complex shapes to be produced, as the drawing ram can continue to draw the blank while the trimming ram trims the edges.
  3. Triple-Action Deep Draw Presses: These presses have three rams, one for drawing, one for trimming, and one for ejecting the finished part. They are used for producing the most complex shapes, such as those with undercut features or re-entrant angles.

Applications of Deep Draw Presses:

Deep draw presses are used in a wide variety of industries, including:

  • Automotive Industry: Producing car body panels, fenders, hoods, and other automotive components.
  • Appliance Industry: Manufacturing cooking pots, pans, sinks, and other appliance components.
  • Aerospace Industry: Creating aircraft components, such as fuel tanks, fuselage sections, and engine housings.
  • Electrical Industry: Producing electrical enclosures, housings, and components.
  • Construction Industry: Manufacturing architectural panels, roofing components, and ventilation ducts.

Benefits of Using Deep Draw Presses:

Deep draw presses offer several advantages over other metalforming methods, such as stamping and casting:

  • Versatility: Deep draw presses can produce a wide range of shapes, from simple cylinders to complex geometries.
  • Accuracy: Deep draw presses can achieve high levels of accuracy and consistency in the dimensions of the finished parts.
  • Efficiency: Deep draw presses can produce parts quickly and efficiently, making them a cost-effective manufacturing method.
  • Material Savings: Deep draw presses can produce parts with minimal waste of material.
  • Strength and Durability: Deep-drawn parts are generally stronger and more durable than those produced by other methods.

In conclusion, deep draw presses are versatile and powerful tools that play a crucial role in various industries. Their ability to produce complex shapes with high precision and efficiency makes them an essential part of modern manufacturing.

Holding the Pressure of a Deep Drawing Press Machine

Unless holding down pressure is applied, the induced hoop stress will cause the blank to fold causing wrinkling. When the material in region X passes over the die profile it is thinned by plastic bending under the effect of the tensile stress. The net effect of the outer part of region X is an increase in the thickness of the material.

Regarding the material in region Y, it can be readily seen that it is subjected to bending and sliding over the die profile; part to stretching in tension in the clearance region, part to stretching between the die and punch in the clearance zone, and part to bending and sliding over the punch profile. Finally, zone Z is subjected only to stretching and sliding over the punch head. The above mechanism can be summarized in accordance with the above division of the blank and the type of stresses to which each region is subjected to:

Various parts of region X may go through some or all of the processes i, ii, and iii; while parts of region Y may go through some or all of processes ii, iii, and iv; finally, parts of region Z may go through some or all of processes iii, iv and v. It should be noted that process i causes thickening of the blank whereas processes ii, iii, iv and v causes it’s thinning.

Figure 2 shows the variation of the thickness along the wall of a drawn cylindrical cup for a flat-headed punch on the right-hand side In hemispherical punches, making allowance for bending over the punch profile radius is not essential, whereas in the more general case of drawing with a flat-headed punch, making allowance for bending over the die and punch profiles, has not yet been solved.

The punch load at any phase of the drawing is determined by the forming region. If the blank is held rigidly at the die to prevent radial drawing the process becomes one of pure stretch-forming. Extensive and detailed experimental and theoretical investigations of cup draws have been carried out by different researchers, aiming at reducing the different defects in the process and improving the quality of the produced parts

Materials used with the Deep Drawing Press Machine

Materials used with a Deep Drawing Press Machine
Materials used with a Deep Drawing Press Machine

The specimens were circular discs of 180 mm diameter and 0.42 mm thickness made from carbon steel with the following w.t. percentages: 0.22% C and 0.5%Mn and the remainder is Fe. They were annealed before being used. Their mechanical behavior in the annealed condition is shown in Figure 3.

The deep drawing tests were carried out using the die shown in Figure 4 which was designed and manufactured for this purpose. It consists of the following main parts: the upper and lower platens in line. They were made of galvanized steel, sleeves, and blank and die holders which were all made from galvanized carbon steel. Compression springs and the punch and die which were made of X12M die steel of the chemical composition shown in Table 1.

The Punch and the Die of a Deep Drawing Press Machine

The punch and die were heat treated in accordance with the heat treatment recommended by the suppliers and the obtained hardness, as measured by Rockwell Hardness, is RC 67. All the punches and dies which were used for investigating the different parameters in this paper i.e. radial clearance
percentages defined as, the radial clearance between punch and die / the blank thickness = C / to, where C is the clearance and to is the original thickness of the blank, punch and die profile radii were all made of the same material and heat treated to RC 67 and their diameters were measured using the Tool Makers traveling microscope and their profile radii using shadowgraph at magnification X20.

The values of the used radial clearance percentages are shown in Table 2. Five punches and five dies with different profile radii were machined and ground under the same cutting conditions. Their dimensions are shown in Tables 3 and 4 respectively.

Normally, two types of blank-holding down pressure are commonly used: clearance blank-holding and pressure blank-holding; the object in each case is to prevent wrinkling of the blank during radial drawing, but with the minimum of interference with free drawing. In the early work of reference, on mild steel blanks it was shown that with clearance blank-holding, an initial clearance of 5 percent was sufficient for this purpose.

The medium pressure

Hydraulic Deep Drawing Press Machine
Hydraulic Deep Drawing Press Machine

With pressure blank-holding, the medium pressure necessary to prevent
wrinkling was 400 psi of blank contact area and clearance of 0.002 when clearance blank–holding was used. The same was adopted in this research work. It was also found that increasing the force beyond this amount had little effect on the maximum punch load or on the final thickness in the base or the profile radius of the produced cups, though the walls were thinner with the higher loads.

The drawing ratio is defined as the ratio of the blank diameter to the throat diameter of the die. It was found that for any given drawing conditions the punch load increases with blank diameter in an approximately linear manner, over the whole of the useful range with a slight tendency to drop near the limiting drawing ratio. It is worth mentioning in this respect that one should differentiate between the drawing ratio which is a geometrical parameter and the limiting drawing ratio which is a material property

Radial Clearance in a Deep Drawing Press Machine

The radial clearance between punch and die throat may affect the drawing process directly by controlling the freedom of the walls either to thicken or to taper and pucker. It can be seen from Figure 4b that the maximum drawing force is greatly influenced by the radial clearance particularly when its value is less than the blank thickness i.e. the case known as the ironing condition where it increased more than three folds. As the clearance increases above the blank thickness, it becomes less effective until it reaches a constant value e.g. it can be seen that.

The best radial clearance percentage for the steel used material was the difference in the maximum drawing force all C / to % above 100 % within the tested range does not exceed 10 %, however, at 130 % the produced cups have the least wrinkling and ears height. This is in agreement with the results reported in reference [10] for mild steel. Hence a net radial clearance of about 30 percent is suitable for general purposes, with free drawing and a reduction of 50 percent, and this has the sanction of practical experience.

Deep Drawing Press Machine Types

Deep Drawing Press Machine Types
Deep Drawing Press Machine Types

However, increasing it beyond this value may allow a bell mouth to persist near the rim of the cup, which would be practically objectionable if the deep-drawn products are required to undergo a re-drawing operation. A more important feature than the drawing force is the local strain in the blank, which may lead to local necking and finally to cracks and fractures. Radial stresses tend to thicken the blank at its rim while bending and sliding over the die profile and the punch head tends to thin it.

The most serious thinning arises from the stretching over the punch head and particularly between the punch head and the die to reduce the thinning as much as possible it is required to maintain high frictional condition on the punch while maintaining low friction everywhere else similar to mandrill drawing.

Hydraulic presses are powerful machines used to apply a significant amount of force to an object through hydraulic fluid pressure. They are essential in various industrial applications, providing the necessary force for processes such as metal forming, stamping, bending, and molding. The versatility and efficiency of hydraulic presses make them indispensable tools in manufacturing and production lines. This document will explore the different types of hydraulic presses, their application areas, components, operational principles, manufacturing process, and the challenges and advancements in the industry.

Types of Hydraulic Presses

Hydraulic presses come in various designs, each suited to specific applications and requirements. The primary types of hydraulic presses include C-frame presses, H-frame presses, four-column presses, straightening presses, arbor presses, laminating presses, and transfer presses.

C-frame presses, also known as gap-frame presses, have a C-shaped frame that provides three-sided access to the work area. This design is ideal for applications requiring easy loading and unloading of materials.

H-frame presses, or two-post presses, have a robust H-shaped frame that offers excellent stability and strength. They are commonly used for heavy-duty tasks such as metal forming and straightening.

Four-column presses, or four-post presses, have four vertical columns that provide superior support and uniform force distribution. These presses are suitable for large-scale applications requiring high precision and repeatability.

Straightening presses are specialized hydraulic presses used to straighten bent or distorted metal components. They are widely used in the automotive and construction industries.

Arbor presses are smaller, manually operated hydraulic presses used for light-duty tasks such as assembly, riveting, and broaching. They are commonly found in workshops and small manufacturing facilities.

Laminating presses are used to bond multiple layers of material together under heat and pressure. These presses are essential in industries such as electronics, where laminated components are common.

Transfer presses are automated hydraulic presses that move the workpiece through multiple stations for different operations. They are highly efficient and used in high-volume production environments.

Application Areas

Hydraulic presses are employed in various industries, thanks to their ability to deliver consistent and precise force. Key application areas include:

Metal forming and forging: Hydraulic presses are crucial in shaping and forming metal parts through processes such as stamping, bending, and deep drawing. They are essential in the production of automotive parts, machinery components, and structural elements.

Automotive industry: In the automotive sector, hydraulic presses are used for manufacturing various parts, including body panels, chassis components, and engine parts. They play a critical role in ensuring the structural integrity and performance of vehicles.

Aerospace industry: The aerospace industry relies on hydraulic presses for forming and shaping high-strength materials used in aircraft components. Precision and reliability are paramount in this industry, making hydraulic presses indispensable.

Plastic and rubber molding: Hydraulic presses are used in the molding of plastic and rubber components, including automotive parts, household goods, and medical devices. They ensure consistent product quality and precision.

Electrical and electronics industry: In the electronics sector, hydraulic presses are used for laminating circuit boards, forming connectors, and assembling electronic components. They provide the necessary force and precision for delicate operations.

Medical device manufacturing: Hydraulic presses are used in the production of medical devices, including surgical instruments, implants, and diagnostic equipment. They ensure the high precision and quality required in the medical field.

Packaging industry: Hydraulic presses are employed in the packaging industry for forming and shaping packaging materials, such as cardboard, plastic, and metal. They help produce packaging solutions that are strong, durable, and aesthetically pleasing.

Components of a Hydraulic Press

A hydraulic press comprises several key components that work together to generate and control the applied force. The main components include the frame, hydraulic cylinder, hydraulic pump, control valves, hydraulic fluid, pressure gauges and sensors, and die and tooling.

The frame is the main structure of the hydraulic press, providing stability and support for all other components. It is typically made of high-strength steel to withstand the significant forces generated during operation.

The hydraulic cylinder is the core component that generates the pressing force. It consists of a cylindrical chamber, a piston, and a piston rod. When hydraulic fluid is pumped into the cylinder, it moves the piston, which in turn applies force to the workpiece.

The hydraulic pump is responsible for generating the hydraulic fluid pressure needed to move the piston. It draws hydraulic fluid from a reservoir and delivers it to the cylinder under high pressure.

Control valves regulate the flow of hydraulic fluid to and from the cylinder, controlling the movement and force of the press. These valves can be manually operated or automated, depending on the press design.

Hydraulic fluid, typically oil, is the medium through which force is transmitted in the hydraulic system. It must have suitable properties, such as viscosity and lubricity, to ensure efficient operation and protect system components.

Pressure gauges and sensors monitor the hydraulic fluid pressure within the system. They provide real-time feedback to the operator or control system, ensuring safe and accurate press operation.

Die and tooling are the interchangeable components that come into direct contact with the workpiece. They are designed to shape, form, or cut the material as required by the specific application.

How Hydraulic Presses Work

Hydraulic presses operate based on Pascal’s principle, which states that pressure applied to a confined fluid is transmitted equally in all directions. This principle allows hydraulic presses to generate significant force with relatively small input pressure.

The operation of a hydraulic press begins with the hydraulic pump drawing fluid from the reservoir and delivering it to the cylinder. The control valves regulate the flow of fluid, directing it into the cylinder to move the piston. As the piston moves, it applies force to the workpiece placed between the die and tooling.

The hydraulic fluid plays a crucial role in this process, as it transmits the applied pressure and lubricates the system components. The pressure gauges and sensors continuously monitor the fluid pressure, providing feedback to ensure the press operates within safe limits.

The force generated by the hydraulic press can be precisely controlled by adjusting the hydraulic fluid pressure and the position of the control valves. This allows for accurate and repeatable operations, essential for high-quality manufacturing.

Manufacturing of Hydraulic Presses

The manufacturing of hydraulic presses involves several stages, from design and engineering to assembly and quality control. Each stage is critical to ensuring the press’s performance, reliability, and safety.

Design and engineering: The process begins with the design and engineering phase, where specifications for the press are developed based on the intended application. This includes selecting suitable materials, determining the required force and stroke, and designing the frame and hydraulic system.

Material selection: High-quality materials, such as high-strength steel for the frame and durable alloys for the hydraulic components, are selected to ensure the press’s longevity and performance.

Fabrication of components: The individual components of the hydraulic press, including the frame, cylinder, and pump, are fabricated using precision machining and manufacturing techniques. This ensures that each component meets the required tolerances and specifications.

Assembly process: The fabricated components are then assembled into the complete hydraulic press. This involves mounting the cylinder, pump, and control valves onto the frame, connecting the hydraulic lines, and installing the die and tooling.

Quality control and testing: Rigorous quality control measures are implemented throughout the manufacturing process to ensure the press meets all specifications and standards. This includes pressure testing the hydraulic system, verifying the accuracy of the control valves, and performing operational tests to ensure the press functions correctly.

Advancements and Innovations

The hydraulic press industry is continually evolving, driven by advancements in technology and increasing demands for efficiency and precision. Key innovations include automation and control systems, energy efficiency improvements, and smart hydraulic presses.

Automation and control systems: Modern hydraulic presses are often equipped with advanced control systems that automate the pressing process. This includes programmable logic controllers (PLCs), human-machine interfaces (HMIs), and sensors that monitor and adjust the press’s operation in real time. Automation improves efficiency, reduces the risk of human error, and enhances the consistency of the finished products.

Energy efficiency improvements: Manufacturers are focusing on developing hydraulic presses that consume less energy and have a smaller environmental footprint. This includes using variable displacement pumps, energy recovery systems, and optimizing the hydraulic system’s design to minimize energy losses.

Smart hydraulic presses: The integration of IoT (Internet of Things) technology into hydraulic presses has led to the development of smart presses. These presses can communicate with other machines and systems, providing real-time data on their status, performance, and maintenance needs. This connectivity allows for predictive maintenance, reducing downtime and extending the press’s lifespan.

Challenges in Hydraulic Press Manufacturing

The manufacturing of hydraulic presses presents several challenges, including precision and quality requirements, cost management, technological advancements, and environmental considerations.

Precision and quality requirements: Hydraulic presses must deliver consistent and precise force, which requires high levels of accuracy in the manufacturing process. Ensuring each component meets the required tolerances and specifications is critical to the press’s performance and reliability.

Cost management: The cost of materials, labor, and energy can significantly impact the overall cost of manufacturing hydraulic presses. Manufacturers must balance quality and cost to remain competitive in the market.

Technological advancements: Keeping up with technological advancements is essential for manufacturers to meet the evolving demands of the industry. This requires continuous investment in research and development to incorporate new technologies and improve existing designs.

Environmental considerations: Environmental regulations and sustainability concerns are increasingly important in hydraulic press manufacturing. Manufacturers must develop eco-friendly presses that consume less energy, use recyclable materials, and minimize their environmental impact.

Conclusion

Hydraulic presses are essential machines in various industries, providing the necessary force for processes such as metal forming, stamping, and molding. Understanding the different types of hydraulic presses, their components, and how they work is crucial for effective application and operation.

The manufacturing process of hydraulic presses involves careful design and engineering, material selection, precision fabrication, and rigorous quality control. Despite the challenges, advancements in technology and innovations are driving the industry forward, leading to more efficient, precise, and environmentally friendly hydraulic presses.

As industries continue to evolve, the hydraulic press industry must adapt and innovate to meet the demands of efficiency, precision, and sustainability. Through continuous research and development, manufacturers can enhance the performance and reliability of hydraulic presses, contributing to the success of various industrial applications.