Categories
Machinery

Non-Mandrel Pipe Bending Machine

Pipe bending machine
Pipe bending machines or tube bending machines are used to bend metal tubes and pipes

Non-mandrel pipe bending machine is a versatile tool used to shape and form various types of pipes and tubes without the need for a mandrel. These machines utilize a unique bending mechanism that gradually deforms the pipe or tube, creating precise bends and curves without internal support.

Advantages of Non-Mandrel Pipe Bending Machines

  1. Reduced Wrinkling and Ovalization: Unlike mandrel bending, non-mandrel bending minimizes wrinkling and ovalization of the pipe or tube, maintaining its structural integrity and preventing material thinning.
  2. Versatility: Non-mandrel machines can handle a wide range of pipe and tube sizes and materials, including steel, stainless steel, aluminum, and copper.
  3. Ease of Use: These machines are relatively easy to operate and require minimal setup, making them suitable for both skilled operators and beginners.
  4. Reduced Material Waste: Non-mandrel bending optimizes material usage, minimizing waste and promoting cost-efficiency.
  5. Precise Bending: Non-mandrel machines can achieve precise bending angles and radii, meeting stringent dimensional requirements.

Key Components of Non-Mandrel Pipe Bending Machines

  1. Frame: The frame provides the structural support for the machine and houses the bending mechanism.
  2. Bending Formers: These formers, also known as dies, shape the pipe or tube during the bending process.
  3. Pressure Roller System: The pressure rollers apply force to the pipe or tube, gradually deforming it into the desired shape.
  4. Drive System: The drive system powers the bending mechanism, providing the necessary torque to bend the pipe or tube.
  5. Control System: The control system regulates the bending process, ensuring precise angle and radius control.

Pipe Bending Machine

Pipe Bending Machine
Pipe Bending Machine

Pipe bending machines are versatile tools used to shape and form various types of pipes and tubes. These machines utilize a mechanical bending mechanism to create precise bends and curves in the material. Pipe bending machines are widely used in a variety of industries, including plumbing, automotive, HVAC, and aerospace.

Types of Pipe Bending Machines

There are two main types of pipe bending machines:

  • Mandrel bending machines use an internal mandrel to support the pipe during the bending process. This type of machine is typically used for bending thicker pipes and tubes.
  • Non-mandrel bending machines do not use an internal mandrel. This type of machine is typically used for bending thinner pipes and tubes.

Key Features of Pipe Bending Machines

Pipe bending machines typically have the following key features:

  • Bending radius: The bending radius is the distance from the center of the pipe to the center of the bend. A larger bending radius will create a more gradual bend, which can help to reduce wrinkling and ovalization.
  • Bending angle: The bending angle is the angle of the bend. Pipe bending machines can typically achieve bending angles of up to 180 degrees.
  • Drive system: The drive system provides the power to bend the pipe. Pipe bending machines typically use hydraulic or electric drive systems.
  • Control system: The control system regulates the bending process and ensures precise angle and radius control.

Applications of Pipe Bending Machines

Pipe bending machines are used in a wide variety of applications, including:

  • Plumbing: Pipe bending machines are used to create bends in pipes for water supply, drainage, and gas lines.
  • Automotive: Pipe bending machines are used to create bends in exhaust pipes, intake manifolds, and other tubular components.
  • HVAC: Pipe bending machines are used to create bends in ductwork, refrigerant lines, and ventilation systems.
  • Furniture manufacturing: Pipe bending machines are used to create curved metal frames for chairs, tables, and other furniture pieces.
  • Aerospace and defense: Pipe bending machines are used to create precise bends in aircraft components, hydraulic lines, and structural supports.

Safety Considerations for Pipe Bending Machine Operation

When operating a pipe bending machine, it is important to follow the manufacturer’s safety guidelines. Some of the key safety considerations include:

  • Wear appropriate personal protective equipment (PPE): This includes safety glasses, gloves, and hearing protection.
  • Secure the workpiece: The workpiece must be securely fastened to the machine’s worktable or clamping system to prevent it from moving or twisting during the bending process.
  • Do not exceed the machine’s rated capacity: Overloading the machine can damage the machine and cause injury to the operator.
  • Keep hands away from the bending area: The bending area can be dangerous, so it is important to keep hands away from the moving parts of the machine.
  • Only operate the machine when authorized: Only authorized personnel should operate the machine.
  • Read the operator’s manual: The operator’s manual contains important safety information and instructions for operating the machine.

Conclusion

Pipe bending machines are essential tools for a variety of industries. By following safety guidelines and using the machine correctly, pipe bending machines can be used to create precise bends in pipes and tubes for a variety of applications.

Reduced Wrinkling and Ovalization

Reduced wrinkling and ovalization are crucial aspects of pipe bending, particularly when working with thin-walled or ductile materials. These issues can compromise the structural integrity and functionality of the bent pipe, leading to potential leaks, reduced flow capacity, and even premature failure.

Wrinkling

Wrinkling occurs when the pipe’s outer surface experiences excessive compression during the bending process. This causes the material to buckle and form folds or ridges, resulting in a weakened and non-uniform structure.

Ovalization

Ovalization refers to the distortion of the pipe’s cross-sectional shape from a circular to an oval form. This occurs when the bending forces apply uneven pressure to the pipe walls, causing them to bulge or flatten, compromising the pipe’s internal diameter and flow characteristics.

Non-Mandrel Pipe Bending

Non-mandrel pipe bending machines are designed to minimize wrinkling and ovalization by employing a unique bending mechanism that gradually deforms the pipe or tube without the need for an internal mandrel. This approach allows for a more controlled and uniform bending process, reducing stress concentrations and preventing excessive material deformation.

Key Factors in Reducing Wrinkling and Ovalization

  1. Bending Radius: A larger bending radius allows for a more gradual bend, reducing the stress applied to the pipe’s outer surface and minimizing wrinkling.
  2. Wall Thickness: Thicker pipe walls provide greater resistance to deformation, reducing the likelihood of wrinkling and ovalization.
  3. Material Properties: Ductile materials, such as copper or annealed steel, are more susceptible to wrinkling and ovalization. Using harder or more rigid materials can help mitigate these issues.
  4. Bending Technique: Proper bending technique, including the use of appropriate bending formers and consistent pressure application, is crucial to minimize wrinkling and ovalization.
  5. Machine Selection: Choosing a non-mandrel pipe bending machine specifically designed for the type of pipe and bending application can significantly reduce wrinkling and ovalization.

Benefits of Reduced Wrinkling and Ovalization

  1. Enhanced Structural Integrity: Minimizing wrinkling and ovalization maintains the pipe’s structural integrity, preventing leaks and ensuring long-term functionality.
  2. Improved Flow Characteristics: Preserving the pipe’s internal diameter and cross-sectional shape ensures optimal flow capacity, reducing pressure drops and maintaining system efficiency.
  3. Reduced Material Waste: Minimizing wrinkling and ovalization reduces the risk of material defects, leading to less scrap and more efficient material utilization.
  4. Enhanced Aesthetic Appeal: Maintaining a smooth and uniform pipe surface contributes to a more aesthetically pleasing product, especially in applications where appearance is important.
  5. Greater Compatibility with Fittings: A round and consistent pipe shape ensures proper alignment and compatibility with fittings, reducing the risk of leaks and ensuring reliable connections.

In conclusion, minimizing wrinkling and ovalization is essential for producing high-quality, durable, and functional bent pipes. By employing non-mandrel bending techniques, selecting appropriate materials and bending radii, and following proper bending procedures, manufacturers can achieve superior bending results, ensuring the integrity and performance of their products.

Versatility

Versatility is the ability to be used in many different ways or to adapt to many different situations. It is a quality that is often valued in tools, products, and people.

Versatility in Tools and Products

Tools and products that are versatile are often more useful and can be used to complete a wider range of tasks. For example, a screwdriver that can be used to turn screws of different sizes and types is more versatile than a screwdriver that can only be used to turn screws of one size.

Versatility in People

People who are versatile are often seen as being well-rounded and adaptable. They are able to learn new things quickly and can apply their skills to a variety of situations. Versatility is a valuable quality in the workplace, as it allows employees to take on a wider range of tasks and responsibilities.

Examples of Versatile Tools and Products

  • A Swiss Army knife is a versatile tool that can be used for a variety of tasks, including cutting, prying, and opening bottles.
  • A smartphone is a versatile product that can be used for a variety of tasks, including making calls, taking pictures, and using apps.
  • A person who is versatile may be able to work in a variety of industries, such as engineering, sales, and teaching.

Benefits of Versatility

There are many benefits to being versatile. Some of the key benefits include:

  • Increased productivity: Versatile tools and products can help you to complete tasks more quickly and efficiently.
  • Reduced costs: Versatile tools and products can often replace multiple specialized tools, which can save you money.
  • Improved adaptability: Versatile people can more easily adapt to changing situations and challenges.

Conclusion

Versatility is a valuable quality that can be found in tools, products, and people. It is often associated with increased productivity, reduced costs, and improved adaptability.

Mandrel Pipe Bending Machine

Mandrel bending machines are versatile tools used to shape and form various types of pipes and tubes. These machines utilize an internal mandrel to support the pipe or tube during the bending process, ensuring consistent and precise bends without distortion or thinning of the material.

Advantages of Mandrel Bending Machines

  1. Reduced Wrinkling and Ovalization: The mandrel provides internal support, preventing wrinkling and ovalization of the pipe or tube, especially when working with thin-walled or ductile materials.
  2. Precise Bending: Mandrel bending machines achieve precise bending angles and radii, meeting stringent dimensional requirements for various applications.
  3. Consistent Wall Thickness: The mandrel maintains consistent wall thickness throughout the bend, preserving the structural integrity of the pipe or tube.
  4. Suitable for Thin-Walled Materials: Mandrel bending is particularly suitable for bending thin-walled pipes and tubes without compromising their structural integrity.
  5. Versatility: Mandrel bending machines can handle a wide range of pipe and tube sizes and materials, including steel, stainless steel, aluminum, and copper.

Key Components of Mandrel Bending Machines

  1. Frame: The frame provides the structural support for the machine and houses the bending mechanism.
  2. Bending Formers: These formers, also known as dies, shape the pipe or tube during the bending process based on the desired bend radius and angle.
  3. Mandrel: The mandrel is an internal rod or bar that fits inside the pipe or tube, providing support and preventing deformation during the bending process.
  4. Drive System: The drive system powers the bending mechanism, providing the necessary torque to bend the pipe or tube while the mandrel provides internal support.
  5. Control System: The control system regulates the bending process, ensuring precise angle and radius control, as well as mandrel positioning and pressure application.

Applications of Mandrel Bending Machines

  1. Plumbing and Piping: Mandrel bending machines are widely used in plumbing and piping applications to create bends for water supply, drainage, and gas lines.
  2. Automotive Industry: These machines are employed in the automotive industry to fabricate exhaust pipes, intake manifolds, and other tubular components with precise bends.
  3. HVAC Systems: Mandrel bending is used in HVAC systems to create bends for ductwork, refrigerant lines, and ventilation systems, ensuring smooth airflow and efficient operation.
  4. Furniture Manufacturing: These machines are used in furniture manufacturing to produce curved metal frames for chairs, tables, and other furniture pieces, adding aesthetic appeal and functionality.
  5. Aerospace and Defense: Mandrel bending is crucial in the aerospace and defense industries for creating precise bends in aircraft components, hydraulic lines, and structural supports, ensuring the integrity and performance of critical components.

Safety Considerations for Mandrel Bending Machine Operation

  1. Wear Proper Personal Protective Equipment (PPE): Always wear appropriate PPE, including safety glasses, gloves, and hearing protection, when operating a mandrel bending machine.
  2. Secure Workpiece Placement: Properly secure the pipe or tube to the machine’s worktable or clamping system to prevent it from moving or twisting during the bending process.
  3. Inspect the Bending Formers and Mandrel: Regularly inspect the bending formers and mandrel for cracks, damage, or wear. Replace any damaged components to ensure consistent and safe operation.
  4. Maintain Proper Clearance: Maintain adequate clearance between the operator and moving parts of the machine to prevent injuries.
  5. Follow Manufacturer Guidelines: Always follow the manufacturer’s operating instructions and safety guidelines for the specific mandrel bending machine being used.

Conclusion

Mandrel bending machines offer a precise and efficient method for shaping and forming pipes and tubes, particularly when working with thin-walled or ductile materials. Their ability to maintain consistent wall thickness and prevent wrinkling or ovalization makes them valuable tools in various industries, including plumbing, automotive, HVAC, furniture manufacturing, and aerospace. With proper safety precautions, training, and maintenance, mandrel bending machines can contribute to efficient and safe manufacturing processes.

Non-mandrel Pipe Bending Machines

Non-mandrel bending machines are versatile tools utilized to shape and form various types of pipes and tubes without the need for an internal mandrel. These machines employ a unique bending mechanism that gradually deforms the pipe or tube, creating precise bends and curves without internal support.

Advantages of Non-Mandrel Pipe Bending Machines

  1. Reduced Wrinkling and Ovalization: Non-mandrel bending minimizes wrinkling and ovalization of the pipe or tube, maintaining its structural integrity and preventing material thinning.
  2. Versatility: Non-mandrel machines can handle a wide range of pipe and tube sizes and materials, including steel, stainless steel, aluminum, and copper.
  3. Ease of Use: These machines are relatively easy to operate and require minimal setup, making them suitable for both skilled operators and beginners.
  4. Reduced Material Waste: Non-mandrel bending optimizes material usage, minimizing waste and promoting cost-efficiency.
  5. Precise Bending: Non-mandrel machines can achieve precise bending angles and radii, meeting stringent dimensional requirements.

Key Components of Non-Mandrel Pipe Bending Machines

  1. Frame: The frame provides the structural support for the machine and houses the bending mechanism.
  2. Bending Formers: These formers, also known as dies, shape the pipe or tube during the bending process.
  3. Pressure Roller System: The pressure rollers apply force to the pipe or tube, gradually deforming it into the desired shape.
  4. Drive System: The drive system powers the bending mechanism, providing the necessary torque to bend the pipe or tube.
  5. Control System: The control system regulates the bending process, ensuring precise angle and radius control.

Applications of Non-Mandrel Pipe Bending Machines

  1. Plumbing and Piping: Non-mandrel machines are widely used in plumbing and piping applications to create bends for water supply, drainage, and gas lines.
  2. Automotive Industry: These machines are employed in the automotive industry to fabricate exhaust pipes, intake manifolds, and other tubular components.
  3. HVAC Systems: Non-mandrel bending is used in HVAC systems to create bends for ductwork, refrigerant lines, and ventilation systems.
  4. Furniture Manufacturing: These machines are used in furniture manufacturing to produce curved metal frames for chairs, tables, and other furniture pieces.
  5. Aerospace and Defense: Non-mandrel bending is crucial in the aerospace and defense industries for creating precise bends in aircraft components, hydraulic lines, and structural supports.

Safety Considerations for Non-Mandrel Pipe Bending Machine Operation

  1. Wear Proper Personal Protective Equipment (PPE): Always wear appropriate PPE, including safety glasses, gloves, and hearing protection, when operating a non-mandrel pipe bending machine.
  2. Secure Workpiece Placement: Properly secure the pipe or tube to the machine’s worktable or clamping system to prevent it from moving or twisting during the bending process.
  3. Inspect the Bending Formers: Regularly inspect the bending formers for cracks, damage, or wear. Replace any damaged formers to ensure consistent and safe operation.
  4. Maintain Proper Clearance: Maintain adequate clearance between the operator and moving parts of the machine to prevent injuries.
  5. Follow Manufacturer Guidelines: Always follow the manufacturer’s operating instructions and safety guidelines for the specific non-mandrel pipe bending machine being used.

Conclusion

Non-mandrel pipe bending machines offer a versatile and efficient method for shaping and forming pipes and tubes without the need for a mandrel. Their ability to produce precise bends without material distortion makes them valuable tools in various industries, including plumbing, automotive, HVAC, furniture manufacturing, and aerospace. With proper safety precautions, training, and maintenance, non-mandrel pipe bending machines can contribute to efficient and safe manufacturing processes.

Applications of Non-Mandrel Pipe Bending Machines

  1. Plumbing and Piping: Non-mandrel machines are widely used in plumbing and piping applications to create bends for water supply, drainage, and gas lines.
  2. Automotive Industry: These machines are employed in the automotive industry to fabricate exhaust pipes, intake manifolds, and other tubular components.
  3. HVAC Systems: Non-mandrel bending is used in HVAC systems to create bends for ductwork, refrigerant lines, and ventilation systems.
  4. Furniture Manufacturing: These machines are used in furniture manufacturing to produce curved metal frames for chairs, tables, and other furniture pieces.
  5. Aerospace and Defense: Non-mandrel bending is crucial in the aerospace and defense industries for creating precise bends in aircraft components, hydraulic lines, and structural supports.

Safety Considerations for Non-Mandrel Pipe Bending Machine Operation

  1. Wear Proper Personal Protective Equipment (PPE): Always wear appropriate PPE, including safety glasses, gloves, and hearing protection, when operating a non-mandrel pipe bending machine.
  2. Secure Workpiece Placement: Properly secure the pipe or tube to the machine’s worktable or clamping system to prevent it from moving or twisting during the bending process.
  3. Inspect the Bending Formers: Regularly inspect the bending formers for cracks, damage, or wear. Replace any damaged formers to ensure consistent and safe operation.
  4. Maintain Proper Clearance: Maintain adequate clearance between the operator and moving parts of the machine to prevent injuries.
  5. Follow Manufacturer Guidelines: Always follow the manufacturer’s operating instructions and safety guidelines for the specific non-mandrel pipe bending machine being used.

Conclusion

Non-mandrel pipe bending machines offer a versatile and efficient method for shaping and forming pipes and tubes without the need for a mandrel. Their ability to produce precise bends without material distortion makes them valuable tools in various industries, including plumbing, automotive, HVAC, furniture manufacturing, and aerospace. With proper safety precautions, training, and maintenance, non-mandrel pipe bending machines can contribute to efficient and safe manufacturing processes.

Companies usually require quick solutions when it comes to pipe bending machine. Pipes may be of different diameters, different materials and different wall thicknesses. Our EMS PB Pipe Bending Machine can be adapted to your pipe bending operations. The pipes are put into the mold and with a pedal movement where the operator doesn’t need to use his hands, the machine starts to bend the pipe. By rotating the pipe around its axis you can have a 3D bending option. The pipe bender machine can be equipped with a touch screen panel for the visual capabilities

The pipe bending machines have a solid frame that has been connected with welding, then powder painted. The frame becomes extremely rigid and it can withstand the applying forces for ages. The upper side of the machine is mostly manufactured in our factory and assembled. The hydraulics and electronic components of our pipe bending machines are from the most recognized suppliers of its field.

Pipe Bending Machine for Metal Pipes

Pipe bending Machine for Metal Pipes
Pipe bending Machine for Metal Pipes

Pipe bending machines are versatile and essential tools used to form and shape various types of metal pipes into desired bends and curves. These machines are widely employed in a variety of industries, including plumbing, automotive, HVAC, and aerospace, to create precise bends that meet specific requirements.

Types of Pipe Bending Machines for Metal Pipes

There are two primary types of pipe bending machines for metal pipes:

  1. Mandrel bending machines: These machines utilize an internal mandrel that supports the pipe during the bending process, ensuring consistent and precise bends without distortion or thinning of the material. Mandrel bending is particularly suitable for bending thin-walled or ductile metal pipes.
  2. Non-mandrel bending machines: These machines do not use an internal mandrel and instead rely on external pressure rollers to gradually deform the pipe or tube into the desired shape. Non-mandrel bending is well-suited for bending thicker-walled or harder metal pipes.

Key Features of Pipe Bending Machines for Metal Pipes

  1. Bending capacity: This refers to the maximum pipe diameter and wall thickness that the machine can handle.
  2. Bending radius: This is the distance from the center of the pipe to the center of the bend. A larger bending radius creates a more gradual bend, reducing wrinkling and ovalization.
  3. Bending angle: This is the angle of the bend. Pipe bending machines can typically achieve bending angles of up to 180 degrees.
  4. Drive system: The drive system provides the power to bend the pipe. Pipe bending machines typically use hydraulic or electric drive systems.
  5. Control system: The control system regulates the bending process and ensures precise angle and radius control.

Applications of Pipe Bending Machines for Metal Pipes

  1. Plumbing and piping: Pipe bending machines are used to create bends in pipes for water supply, drainage, and gas lines.
  2. Automotive industry: These machines are employed in the automotive industry to fabricate exhaust pipes, intake manifolds, and other tubular components with precise bends.
  3. HVAC systems: Pipe bending is used in HVAC systems to create bends for ductwork, refrigerant lines, and ventilation systems, ensuring smooth airflow and efficient operation.
  4. Furniture manufacturing: These machines are used in furniture manufacturing to produce curved metal frames for chairs, tables, and other furniture pieces, adding aesthetic appeal and functionality.
  5. Aerospace and defense: Pipe bending is crucial in the aerospace and defense industries for creating precise bends in aircraft components, hydraulic lines, and structural supports, ensuring the integrity and performance of critical components.

Benefits of Pipe Bending Machines for Metal Pipes

  1. Precise bending: Pipe bending machines can achieve precise bending angles and radii, meeting stringent dimensional requirements for various applications.
  2. Reduced material waste: Optimized material usage minimizes waste and promotes cost-efficiency.
  3. Enhanced structural integrity: Precise bends maintain the structural integrity of the pipe, preventing premature failure or leaks.
  4. Improved flow characteristics: Preserving the pipe’s internal diameter ensures optimal flow capacity, reducing pressure drops and maintaining system efficiency.
  5. Increased versatility: Pipe bending machines can handle a wide range of pipe sizes, materials, and bending requirements, making them versatile tools for various industries.

Conclusion

Pipe bending machines for metal pipes play a vital role in various industries, enabling the creation of precise and durable bends that meet specific functional and aesthetic requirements. Their versatility, efficiency, and ability to produce high-quality bends make them essential tools for manufacturing, construction, and other applications. With proper selection, operation, and maintenance, pipe bending machines can contribute to efficient, safe, and cost-effective production processes.

The pipe bending machines are used in many fields such as HVAC, pipe fitting, metalworking where pipes are used, environment decoration, machinery manufacturing and so on. The pipe benders are small in size so you don’t need big spaces in your working area. The working capacity of our pipe bending machines start from 1/2″ mm of the pipe diameter to as high as 5″ pipes. The length of the pipe doesn’t play a role here. You can apply as long as 6 m lenght of pipes in our tube bending machines

For more information and price request, please send us a mail or you can write to us by WhatsApp number shown on our main page

EMS Metalworking Machinery

We design, manufacture and assembly metalworking machinery such as:

  • Hydraulic transfer press
  • Glass mosaic press
  • Hydraulic deep drawing press
  • Casting press
  • Hydraulic cold forming press
  • Hydroforming press
  • Composite press
  • Silicone rubber moulding press
  • Brake pad press
  • Melamine press
  • SMC & BMC Press
  • Labrotaroy press
  • Edge cutting trimming machine
  • Edge curling machine
  • Trimming beading machine
  • Trimming joggling machine
  • Cookware production line
  • Pipe bending machine
  • Profile bending machine
  • Bandsaw for metal
  • Cylindrical welding machine
  • Horizontal pres and cookware
  • Kitchenware, hotelware
  • Bakeware and cuttlery production machinery

as a complete line as well as an individual machine such as:

  • Edge cutting trimming beading machines
  • Polishing and grinding machines for pot and pans
  • Hydraulic drawing presses
  • Circle blanking machines
  • Riveting machine
  • Hole punching machines
  • Press feeding machine

You can check our machinery at work at: EMS Metalworking Machinery – YouTube

Applications:

  • Beading and ribbing
  • Flanging
  • Trimming
  • Curling
  • Lock-seaming
  • Ribbing
  • Flange-punching

Leave a Reply

Your email address will not be published. Required fields are marked *